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Abstract

We present an introduction to the study of chaos in discrete and continuous dynamical systems
using the CAS Maxima. These notes are intended to cover the standard topics and techniques:
discrete and continuous logistic equation to model growth population, staircase plots, bifurcation
diagrams and chaos transition, nonlinear continuous dynamics (Lorentz system and Duffing os-
cillator), Lyapunov exponents, Poincaré sections, fractal dimension and strange attractors. The
distinctive feature here is the use of free software with just one ingredient: the CAS Maxima. It is
cross-platform and have extensive on-line documentation.

1 Introduction
The use of a computer is a natural way to explore those notions related to dynamical systems; here,
we present the basics of chaotic dynamics using Maxima. This is a free, cross-platform, general
purpose computer algebra system [Max 11], capable also of doing numerical computations, that we
have used in short introductory summer courses (about 10 hours). The participants were a mixture of
mathematics, physics and engineering students, and occasionally high-school teachers. The following
notes are the outcomes of such courses, and given the target audience, we have made every effort to
keep them at an elementary level, so standard calculus and linear algebra should suffice to read them.

We believe that the use of Maxima has the following advantages:

(1) Only one program is required (even the use of a graphical front-end is not mandatory).

(2) Students can experiment with well known dynamical models via the built-in functions of Maxima,
and modify them to suit their needs, as the whole sources of Maxima are available.

(3) The learning curve is smooth, because Maxima syntax is quite intuitive. In fact, this syntax is
similar to the one used on the blackboard, so there is little risk that the student “get things done
by the computer, without understanding what is going on”, as one must know the mathematical
meaning of a command even in order to write its arguments.
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(4) Students can write their own Maxima programs in a short time (in our experience, after a couple
of two-hours sessions).

(5) Since the software is free and cross-platform, students and teachers can use the same program at
school and at home with no cost. There is no need for renewing licenses or a particular operating
system.

Of course, it is impossible to include all topics one would wish, so we have excluded those theoret-
ical results which are hard to implement using the computer, because they involve irrational numbers.
Explicitly, we only make some brief remarks about results such as the density of periodic orbits or
sensitivity to initial conditions and leave aside topological transitivity.

In writing this paper, we have used Maxima version 5.28.0 and its graphical interface wxMaxima
version 12.09.0. The version of Gnuplot was 4.6 patchlevel 0, everything running on a generic desktop
PC with Slackware Linux 14.0. The commands used are available as a Maxima session in the personal
page of one of the authors: http://galia.fc.uaslp.mx/˜jvallejo/Software.html.

2 The logistic equation: continuous case
The simplest model of population growth is given by:

dP (t)

dt
= k · P (t) (1)

where P (t) is the population at time t and k is a constant, positive for an increasing population and
negative for a decreasing one. However, in the long run this is not a good model: it disregards limiting
factors such as propagations of diseases or lacks of food supply. A simple modification in (1) which
takes into account these factors can be obtained replacing k with a parameter K = K(P ), such that it
decreases when P increases. A possible model for this, is K = a− b · P , a� b > 0, so (1) takes the
form

dP (t)

dt
= (a− b · P (t)) · P (t). (2)

If P (t) ' 0, equation (2) becomes equation (1), with k ' a, but for increasing values of P (t), b ·P (t)
approach a, and therefore dP (t)

dt
' 0, slowing down the population’s growth. Making the change of

variables

P =
ax

b
,

dP (t)

dt
=
a

b

dx

dt
(3)

equation (2) becomes (with a = k)

dx

dt
= k · x · (1− x), (4)

which is called the logistic equation (it was introduced by P. F. Verhulst in 1838, a discrete version
was popularized by R. May in the seventies, see [May 76]).

We will use Maxima to solve equation (4) (note the use of the apostrophe to define an equation.
The command for solving first or second-order ODEs is ode2):
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(%i1) ’diff(x,t)=k*x*(1-x);

(%o1)
d

d t
x = k (1− x) x

(%i2) ode2(%,x,t);

(%o2)
log (x)− log (x− 1)

k
= t+%c

Now, we set an initial condition for this first-order (hence the 1 in ic1) equation x(t = 0) = x0:

(%i3) ic1(%,t=0,x=x[0]),logcontract;

(%o3)
log
(

x
x−1

)
k

=
k t+ log

(
x0
x0−1

)
k

and solving the last equation we get

(%i4) solve(%,x);

(%o4) [x =
x0 e

k t

x0 ek t − x0 + 1
]

Thus, we have the explicit solution (note that the outcome (%o4) is a list –a collection of elements
enclosed between brackets– and we want to define our solution as the right-hand side of its first
element):

(%i5) define(x(t),rhs(first(%o4)))$

Let us note that normalization (3) implies that for all initial conditions 0 < x0, the solutions
x(t)→ 1 when t→∞. In fact, even if we had not known the solutions explicitly, a simple continuity
argument would show that all solutions bounded by the steady states x = 0 and x = 1, tend mono-
tonically to x = 1 1. Also, in the unbounded region x > 1 all solutions tend monotonically to the
steady state x = 1. For x < 0 there is no solution (populations are non negative). In general, in a one
dimensional continuous system, solutions either converge monotonically to a steady state or diverge.

The parameter k affects the slope of the solutions, as we can see by graphing them together for
different values of k (in this example, varying from k = 0.25 to k = 1.75 with step 0.25).

(%i6) wxplot2d(makelist(subst([k=d*0.25,x[0]=0.1],x(t)),d,1,7),
[t,0,15],cons(legend,makelist(k=d*0.25,d,1,7)),
[gnuplot_preamble,"set key right bottom"]);

1For a system ẋ = f(x), in the region between two consecutive steady states x(t) = x∗ with f(x∗) = 0, x∗1 <
x∗2, the mapping f (and therefore the derivative ẋ) has constant sign, so a solution x(t) with initial condition x0 such
that x∗1 < x0 < x∗2, is strictly monotonic. This solution is bounded, so limt→∞ x(t) = x∗2 if x(t) is increasing, and
limt→∞ x(t) = x∗1 if x(t) is decreasing. Finally, because of the uniqueness theorem for the Cauchy problem, x(t) can
not reach the values x∗1, x

∗
2. A similar reasoning can be used for unbounded regions.
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(%t6) (%o6)

3 The logistic equation: discrete case
The discrete version of equation (4) is the difference equation (with r > 0)

xn+1 = r · xn · (1− xn). (5)

In general, equation (5) can’t be solved exactly2. Let us define the so called logistic map (in fact, a
family of quadratic maps), F (r, x) = r · x · (1 − x). From (5) we see that, for a given r, the fixed
points of F (r, x) are the only constant solutions xn = c of (5). These steady states can be easily
calculated:

(%i7) solve(r*c*(1-c)=c,c);

(%o7) [c =
r − 1

r
, c = 0]

From our experience with the continuous case, we are tempted to say that any solution of the
logistic map is either a sequence bounded by the constant solutions xn = 0 and xn = (r − 1)/r
(asymptotically approaching one of these), or a divergent one. But this is not true: The behavior of
discrete systems is quite different from that of their continuous counterparts. To be sure, we make a
graphical analysis of the solutions. First, we define the evolution operator of the system:

(%i8) F(r,x):=r*x*(1-x)$

Next, we use the evolution command (included in the dynamics package) to calculate, for
a fixed r, the n + 1 points xi+1 = F (r, xi) from i = 0 to i = n, where the initial value x0 is given
(here we use a pseudo-random initial condition between 0 and 1).

This set of points is a segment of the orbit of x0. We start with r = 0.25 making 15 iterations:

(%i9) load(dynamics)$

2This sentence deserves a clarification. Actually, “closed” solutions do exist, although defined throuh implicit func-
tional formulas which are ‘hardly useful for computational purposes’, see [Bru 98] and references therein. However, there
are well-known explicit solutions for particular values of k, see http://en.wikipedia.org/wiki/Logistic_
map#Solution_in_some_cases.
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(%i10) set_random_state(make_random_state (true))$

(%i11) x[0]:random(1.0);

(%o11) .8886589561406515

(%i12) evolution(F(0.25,x),x[0],15,[y,0,1]);

(%t12) (%o12)

In this case, the population dies. Indeed, this unlucky fate is independent of the initial condition
x0, whenever 0 < r ≤ 1 and x0 ∈

]
r−1
r
, 1
r

[
(let us note that this last condition is always fulfilled if

x0 ∈]0, 1[). For 0 < r ≤ 1, this parameter controls the rate at which population dies, as the reader can
check by using other values for r, such as r = 0.123456789.

A few experiments will lead us to the following rules for the behavior of the solutions:

• If 0 < r ≤ 1 and x0 ∈
]
r−1
r
, 1
r

[
, the population eventually dies, independently of the initial

condition.

• If 1 < r ≤ 2 and x0 ∈]0, 1[, the population quickly approaches the value (r − 1)/r, indepen-
dently of the initial condition.

• If 2 < r ≤ 3 and x0 ∈]0, 1[, the population tends again to the value (r − 1)/r, but in an
oscillating way (maybe after a short transient). The rate of convergence is linear, except for
r = 3, where the rate of convergence is quite slow, in fact it is sub-linear.

• If 3 < r < 1 +
√
6 (with 1 +

√
6 ' 3.45), the population oscillates between two values, almost

independently of the initial condition. These two values, which depend on r, are said to have
primary period two.

• If 3.45 < r < 3.54 (approximately), for almost all initial condition the population oscillates
between four periodic points.

• If r increases over 3.54, for almost all initial condition the population oscillates between 8 pe-
riodic points, then 16, 32, etc. The size of the intervals formed by the values of the parameter
producing oscillations of a given length, becomes small, and the quotient of the size for two con-
secutive period-doubling intervals approaches the so called Feigenbaum constant F = 4.669...
This behavior is called a period-doubling cascade.
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Let us note that when the parameter r increases, the dynamics differs from that observed in the
continuous case.

Let us show some examples. For our initial pseudo-random x0 and r = 1.3:

(%i13) evolution(F(1.3,x),x[0],15,[y,0,1]);

(%t13) (%o13)

We note that (1.3− 1)/1.3 ' 0.23. For r = 3.5 and the initial condition x0 = 0.3, we observe the
transient and four periodic points:

(%i14) evolution(F(3.5,x),0.3,25,[y,0,1]);

(%t14) (%o14)

4 Staircase diagrams
There is another graphical method to study the phenomenon of the emergence of “attracting” periodic
points that we have seen in the last example, based on the particular form of the evolution equation:
xn+1 = f(xn). For the logistic map (f(x) = r · x · (1 − x)), if the coordinates of the points in the
plane represent two consecutive values in the orbit of x0, the point (x, y) = (xn, xn+1) can be obtained
graphically as the intersection of the vertical line x = xn and the graph of the function y = f(x).
Once xn+1 is known, in order to get xn+2 we just have to let xn+1 play the rôle of xn in the previous
step. So, we take the intersection of the horizontal line y = xn+1 with the diagonal y = x. Now
xn+2 = f(xn+1), and by iterating the process a predetermined number of times, we get a segment of
the orbit of x0. Maxima implements this construction with the staircase command:
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(%i15) staircase(F(3.1,x),x[0],250,[x,0,1],[y,0,1]);

(%t15) (%o15)

Here we see the orbit oscillating between the periodic points (x ' 0.56) and (x ' 0.76). We can
also reproduce the behavior of (%o14), where there is a period-four orbit (we make 500 iterations to
get a distinguishable path). Let us note that each “rectangle” intersecting the diagonal defines two
periodic points:

(%i16) staircase(F(3.5,x),x[0],500,[x,0,1],[y,0,1]);

(%t16) (%o16)

5 Bifurcations and chaos
We have seen that the behavior of the orbits for the logistic map depends on the parameter r. In fact,
from r = 3 onwards, the number of periodic points increases in a kind of “period-doubling cascade”
(see (%o17) below). It is possible to study the change in the structure of the periodic orbits using the
so called bifurcation diagrams. In these, we represent the values of the parameter r on the horizontal
axis. For each of these values we mark the values of the corresponding “attracting” periodic points
(the use of attracting points is a technical issue, that we will not address here). Maxima implements
these plots in its built-in orbits command. In the example below, we restrict the plot to the iterations
between n = 150 and n = 200, for a given initial condition x0. The range of the values of r is [2.5, 4]:

(%i17) orbits(F(r,x), x[0], 150, 200, [r, 2.5, 4], [style, dots]);
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(%t17) (%o17)

The diagram so obtained displays a special property: it is self-similar. This means that after a
change of scale, the resulting picture has the same structure that the original one. For example, if we
magnify (%o17) centering the zoom on the second bifurcation of the lower branch, we get:

(%i18) orbits(F(r,x),x[0],150,200,[r,3.5,3.6],[x,0.3,0.4],
[style,dots]);

(%t18) (%o18)

A measure of the self-similarity of a set is its fractal dimension which, unlike the dimension of a
vector space, can be a non integer number. In Section 10 we show an example of a set having non
integer fractal dimension.

The period-doubling cascade and the appearance of sets with fractal dimension, are usually signs
of chaotic behavior. A dynamical system with whose evolution is described by a continuous function
f : I ⊂ R→ I is said to be chaotic3 if:

(a) It has sensitivity to initial conditions: a small variation in the initial condition x0 of an orbit can
produce, in the long run, another orbit far away from the original one.

(b) Periodic points are “dense” in the phase space I of the system: in general, a set S is dense in the
set I ⊂ R if for any point p ∈ I and any ε > 0, the interval ]p− ε, p+ ε[ intersects S.

(c) It has the mixing property (we also say that the system is topologically transitive): for any two
intervals J,K ⊂ I there exist points of J whose orbits eventually enter K, that is, there exists an

3For simplicity we consider only one-dimensional systems, but the case of multidimensional systems is analogous.
For further details on the chaos definition see [Ban 92], [Dev 89], [VB 94]
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n > 1 such that
fn(J) ∩K 6= ∅,

with fn = f ◦
n)
· · · ◦ f . This property is satisfied if and only if the system has an orbit {fn(x0) :

n ∈ N ∪ {0}} that is dense in I . 4

We illustrate each one of these conditions using the logistic map in the examples below.

(a) Sensitivity to initial conditions. For r = 4, we consider the initial conditions x0 = r−1
r

= 3
4

and
x0 + ε, comparing the respective orbits after 50 iterations.

(%i19) evolution(F(4,x),3/4,50,[style,[lines,2]]);

(%t19) (%o19)
Choosing ε small enough (pseudo-random) we see how drastically these orbits diverge (we will
see how to measure this divergence in section 7):

(%i20) eps:random(0.000000000001);

(%o20) 9.87415729237455 10−13

(%i21) evolution(F(4,x),3/4+eps,50,[style,[lines,2]]);

(%t21) (%o21)

4The equivalence is as follows: if the orbit of x0 is dense in I , there exists an infinity of points xn = fn(x0) in
any pair of intervals J,K, so f is transitive. Conversely, if f is transitive, for a given interval J let {Aj}j∈N be the
basis of open intervals with rational end points that are contained in J ; from the transitivity of f the family of open
sets Bj = ∪p∈Nf−p(An) is dense in J (since, if U ⊂ J , there exists a number p such that fp(U) ∩ An 6= ∅, that is,
U ∩ fp(An) = U ∩Bn 6= ∅). From the Baire theorem, ∩j∈NBj is dense in J too. But this intersection consists of points
with dense orbits, since if x ∈ ∩j∈NBj , for each n ∈ N there is a pn ∈ N such that fpn

∈ An. The sequence {fpn
}n∈N

has points in each An and therefore is dense.
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(b) The set of periodic points is dense in the interval I = [0, 1]. This is clearly seen in (%o17), where
the right side of the unit square is “filled” with periodic points.

(c) There exists a dense orbit. Again, we can exemplify this behavior with k = 4 and the initial
condition x0 = 0.2 after 50, 000 iterations. Its orbit fills the phase space:

(%i22) evolution(F(4,x),0.2,50000,[style,dots]);

(%t22) (%o22)

6 The Lorenz attractor
As mentioned, the monotonicity of the solutions restricts the presence of chaos in one-dimensional
continuous systems. However, for higher order equations (at least of second order with a time de-
pendent non-homogeneous term, as in the Duffing equation shown later) or in systems of first order
equations (at least three equations, even in the case of an autonomous system, but necessarily non
linear5), it is possible to have chaotic behavior. As an example, we consider the Lorenz system, the
first system in which the properties of chaotic dynamics were explicitly seen, in 1963 [Lor 63]:

ẋ = 10y − 10x

ẏ = −xz + 28x− y
ż = xy − 8z/3

To numerically study the orbits, we use the 4th-order Runge-Kutta method. The following commands
compute the orbit with initial condition (−8, 8, 27) after 50 time units (with a step of 0.01):

(%i23) numer:false$

(%i24) latractor: [10*y-10*x, -x*z+28*x-y, x*y-8*z/3]$

(%i25) linitial: [-8, 8, 27]$

5We have already seen that one dimensional continuous systems can not display chaotic behavior (nor even periodic
behavior). For autonomous systems in the plane (or second order differential equations with time-independent coeffi-
cients), the uniqueness of solutions together with the Poincaré-Bendixson theorem rule out the existence of chaos. The
problem of setting the “minimal conditions” to ensure the existence of chaos is still an open question. An interesting
report on this topic is [SL 00].
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(%i26) lsolution:rk(latractor,[x,y,z],linitial,[t,0,50,0.01])$

(%i27) lpoints: map(lambda([x], rest(x)), lsolution)$

(%i28) load(draw)$

The following command needs that the package draw be previously loaded (do load(draw) oth-
erwise). Note that the output is actually a separate Gnuplot window, so (by pressing the left button of
the mouse and dragging around) the reader can rotate the whole picture to better appreciate its details.

(%i29) draw3d(point_type=none,points_joined=true,color=orange,
xlabel="x(t)",ylabel="y(t)",zlabel="z(t)",
xtics=10,ytics=10,ztics=10,points(lpoints));

(%t29) (%o29)

The phrase “order within chaos” is frequently found. It means that in some systems, even though
the orbits can appear unpredictable and very complex, there is some regularity. For example, in the
Lorenz system, the sensitivity to initial conditions prevents us from making accurate predictions, but
we can assert that in the long run the orbit will be restricted to a bounded region of the space called an
attractor6. This seems clear in figure (%o29), but we can prove it analytically with the aid of Maxima.
Let us consider a general Lorentz system, where σ, ρ and β are parameters:

ẋ = σ(y − x)
ẏ = x(ρ− z)− y
ż = xy − βz

, (6)

(%i30) remfunction(x)$

(%i31) gradef(x(t),%sigma*(y(t)-x(t)))$

(%i32) gradef(y(t),x(t)*(%rho -z(t))-y(t))$

(%i33) gradef(z(t),x(t)*y(t)-%beta *z(t))$

6Attractors are classified as strange and no strange if they have fractal or integer dimension, respectively. In section
10 we will see how to compute the fractal dimension of an attractor.
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We consider the set of those points belonging to an orbit that, for a given instant t, lie on the
sphere with center (0, 0, σ + ρ) and radius R(σ + ρ), with R a constant to be determined:

(%i34) x(t)ˆ2+y(t)ˆ2+(z(t)-(%sigma +%rho))ˆ2=Rˆ2*(%sigma +%rho)ˆ2;

(%o34) (z (t)− σ − ρ)2 + y (t)2 + x (t)2 = (σ + ρ)2R2

Differentiating equation (%o34) (using the chain rule) and substituting (6), we get:

(%i35) facsum(diff(%,t),x(t),y(t),z(t));

(%o35) − 2 β z (t)2 + 2 β (σ + ρ) z (t)− 2 y (t)2 − 2σ x (t)2 = 0

This looks like an ellipsoid, and we can prove it is one by “completing the squares”:

(%i36) factor(solve((sqrt(2*%beta)*z(t)-u)ˆ2-uˆ2=
2*%beta*z(t)ˆ2-2*%beta*(%sigma+%rho)*z(t),u));

(%o36) [u =

√
β (σ + ρ)√

2
]

So, the points (x(t), y(t), z(t)) should satisfy

−2σx(t)2 − 2y(t)2 − 2β

(
z(t)− σ + ρ

2

)2

+ β
(σ + ρ)2

2
= 0,

which is the equation of an ellipsoid with center (0, 0, (σ+ρ)/2). The semi-axis along directions OX,
OY and OZ are, respectively:

(%i37) solve(1/a = sqrt(2*%sigma/(%beta*(%sigma +%rho)ˆ2/2)),a);

(%o37) [a =
|σ + ρ|
2
√

σ
β

]

(%i38) solve(1/b = sqrt(2/(%beta*(%sigma +%rho)ˆ2/2)),b);

(%o38) [b =
|σ + ρ|

2
√

1
β

]

(%i39) solve(1/c = sqrt(2*%beta/(%beta*(%sigma +%rho)ˆ2/2)),c);

(%o39) [c =
|σ + ρ|

2
]

These lengths depend only on the parameters σ, ρ and β. Thus, taking R large enough (explicitly
R > σ+ρ

2
max{2,

√
1 + β,

√
1 + β/σ}), we obtain a sphere containing the initial conditions (here

(x(0), y(0), z(0)) = (0, 0, 0) for simplicity) and such that when they evolve in time, all orbits remain
inside this sphere.
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As already pointed, the presence of attractors having fractal structure (strange attractors) is a
signal for chaotic dynamics, but it is neither a necessary nor a sufficient condition. There are attractors
derived from chaotic dynamics that are not strange (for example, in the logistic equation with k = 4
the attractor is the whole interval [0, 1]) and there are non-chaotic systems displaying attractors with
fractal dimension (see [GOPY 84]).

7 Lyapunov exponents
We have seen that a feature of chaotic dynamical systems is the sensitivity to initial conditions. Lya-
punov exponents are introduced to qualitatively measure this property. The idea is quite simple: By
choosing a fixed orbit, we compare it with other orbits having close initial conditions, and then mea-
sure the distance between them with a factor of the form exp(λt). Here λ is the Lyapunov exponent.
If it is positive, the orbits diverge asymptotically and there is sensitivity to initial conditions (greater
when when λ is large). If the exponent λ is negative, the orbits must asymptotically approximate
each other and there is no sensitivity to initial conditions. A value of λ = 0 indicates that the orbit
considered is a stable fixed point.

Let us consider, for simplicity, a one-dimensional dynamical system

xn+1 = f(xn)

with f : R → R derivable except for a finite number of points (this is the case, for example, of the
logistic map). We consider the orbits starting at the points x0 and x0+ε. After N iterations the points
on the orbits will be, respectively, fN(x0) and fN(x0 + ε), where fN = f ◦ · · · ◦ f . So, after N
iterations the distance between the orbits is |fN(x0 + ε)− fN(x0)|, which can be written in the form

|fN(x0 + ε)− fN(x0)| = εeNλ(x0)

for a suitable λ(x0) ∈ R that is called the Lyapunov exponent at the point x0. Is in this way that
the Lyapunov exponent gives a measure of how the initial separation ε is amplified when the orbits
evolve.

Solving the last equation for λ(x0):

(%i40) assume(%epsilon>0,N>0)$

(%i41) remvalue(x[0])$

(%i42) solve(abs(f[N](x[0]+%epsilon)-f[N](x[0]))=
%epsilon*exp(N*%lambda),%lambda);

(%o42) [λ =
log
(
|fN (ε+x0)−fN (x0)|

ε

)
N

]

and taking limits with ε→ 0 andN →∞ (taking into account the continuity of log and the definition
of the derivative), we have:

λ(x0) = lim
N→∞

1

N
log

∣∣∣∣dfNdx (x0)

∣∣∣∣ .
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Just to show the symbolic capabilities of Maxima, we will use it to evaluate the derivative in the last
expression. First, we declare the derivative of the function f by giving it a name (the usual f ′):

(%i43) gradef(f(x),f\’(x))$

Then, we set the values x1 = f(x0) and f ′(x0) = df
dx
(x0):

(%i44) atvalue(f(y),y=x[0],x[1])$

(%i45) atvalue(’diff(f(y),y),y=x[0],f\’(x[0]))$

Now, we compute the derivative of f2 = f ◦ f at x0 (Maxima knows the chain rule):

(%i46) at(diff(f(f(x)),x),x=x[0]);

(%o46) f ′ (x0) f
′ (x1)

It is then easy to prove (by induction) that

dfN
dx

(x0) =
N−1∏
i=0

f ′(xi),

so

λ(x0) = lim
N→∞

1

N
log

∣∣∣∣∣
N−1∏
i=0

f ′(xi)

∣∣∣∣∣ = lim
N→∞

1

N

N−1∑
i=0

log |f ′(xi)| . (7)

Using equation (7) we can compute the Lyapunov exponents numerically, approximating the limit
by a finite sum for N big enough. As an example, consider the logistic map with parameter r = 3. In
(%i8) we defined the function F (r, x), and now we define its derivative:

(%i48) define(dF(r,x),diff(F(r,x),x))$

Then we set the parameter value:

(%i49) r:3$

Here we set the number of iterations:

(%i50) maxiter:50000$

and the initial condition7:

(%i51) x[1]:random(1.0);

(%o51) .4823905248516196

Now, we construct the orbit from the initial condition:
7We denote it by x1 instead of x0 because we are going to make a list with the iterations, with the initial condition as

the first element and, for Maxima, lists are enumerated starting with the index 1.
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(%i52) for j:2 thru maxiter do (x[j]:F(r,x[j-1]))$

Finally, we estimate the corresponding Lyapunov exponent:

(%i53) L:0$

(%i54) for j:1 thru maxiter do L:L+log(abs(dF(r,x[j])))$

(%i55) ’%lambda=L/maxiter;

(%o55) λ = −3.145501884323275 10−4

For this case, r = 3, we get λ ' 0. The reader can experimentally check that for the logistic map
λ(x0) = λ, that is, the Lyapunov exponent does not depend on the initial condition x0 ∈]0, 1[, it
only depends on the parameter r. For values of r lesser than (approximately) 3.569945, we have that
λ ≤ 0, but if r > 3.569945, the behavior of λ as function of r becomes quite complicated.

8 The Duffing oscillator
We have only considered systems described by first-order equations. However, most of the physical
systems of interest are described by second order equations. In this section we present and example
of these, the Duffing oscillator.

Let us consider a general Newtonian system, described by a second-order differential equation:

ẍ(t) = F (x(t), ẋ(t))

If F = F (x) = −dV/dx, we say that the system is conservative and the function V = V (x) is called
the potential. For example, the system

ẍ(t) = −1

4
x3(t) + x(t)

is conservative and its potential is given by

(%i56) ’V(x)=integrate(xˆ3/4-x,x);

(%o56) V (x) =
x4

16
− x2

2

The graph of this function is:

(%i57) wxplot2d(integrate(xˆ3/4-x,x),[x,-3,3],[ylabel,"V(x)"]);
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(%t57) (%o57)

We observe an unstable equilibrium at x = 0 and two stable equilibria at x = −2 and x = 2. Now
let us modify the system by including a velocity-dependent damping term:

ẍ(t) = −1

4
x3(t) + x(t)− 1

10
ẋ(t)

The system is no longer conservative, since the damping term dissipates energy in the form of heat.
As a result, the oscillations made by the system decrease in amplitude until there is no motion. We
illustrate this by computing the trajectory with initial conditions x(0) = 3, ẋ(0) = 10:

(%i58) duff:[v,-v/10+x-xˆ3/4]$

(%i59) icduff:[3,10]$

(%i60) solduff:rk(duff,[x,v],icduff,[t,0,100,0.1])$

(%i61) curveduff:map(lambda([x],rest(x,-1)),solduff)$

(%i62) pointsduff:map(lambda([x],rest(x)),solduff)$

(%i63) wxdraw2d(point_type=none,points_joined=true,
xlabel="t",ylabel="x(t)",points(curveduff));

(%t63) (%o63)

We can also represent the dynamics of the system in the plane (x, v = dx/dt) (the phase plane):

(%i64) wxdraw2d(point_type=none,points_joined=true,
xlabel="x(t)",ylabel="v(t)",points(pointsduff));
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(%t64) (%o64)

Note that this result coincides with (%o63), where it is clear that the system evolves to the stable
equilibrium x = −2, oscillating around this value with decreasing amplitude until it stops.

The Duffing oscillator is obtained including in the previous system and oscillating force (the
forcing term) sin(ωt):

ẍ(t) = −1

4
x3(t) + x(t)− 1

10
ẋ(t) + sin(ωt)

The effect of the forcing term is to restore the energy dissipated by the damping term. If the frequency
of the forcing term is the appropriated one, the system will oscillate in a stable way, but if there is no
synchronization with respect to the non-forced system, a chaotic behavior will appear. For example,
for ω = 1 starting from the unstable equilibrium (x = 0, v = 0), after a short transient the system will
evolve to a stable oscillating regime (a limit cycle):

(%i65) duffing:[v,-v/10+x-xˆ3/4+sin(t)]$

(%i66) icduffing:[0,0]$

(%i67) sduffing:rk(duffing,[x,v],icduffing,[t,0,100,0.1])$

(%i68) cduffing:map(lambda([x],rest(x,-1)),sduffing)$

(%i69) pduffing:map(lambda([x],rest(x)),sduffing)$

(%i70) wxdraw2d(point_type=none,points_joined=true,color=magenta,
xlabel="t",ylabel="x(t)",points(cduffing));

(%t70) (%o70)
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The corresponding phase plane diagram shows that the system tends to a limit cycle, oscillating
around the two stable equilibria, instead of approaching just one of them, as happens for the non-
forced case:

(%i71) wxdraw2d(point_type=none,points_joined=true,color=magenta,
xlabel="x(t)",ylabel="v(t)",points(pduffing));

(%t71) (%o71)

The behaviors considered do not exhaust the possibilities for the dynamics of the Duffing oscilla-
tor. In the next section we will see how to analyze the chaotic case.

9 Poincaré sections
In general, for a second order differential equation of the form

ẍ(t) = F (t, x, ẋ)

or, equivalently (introducing the variables u(t) = x(t), v(t) = ẋ(t)) for the first order system
du

dt
= v

dv

dt
= F (t, u, v)

,

the trajectories in the phase plane can intersect themselves and the resulting diagram becomes quite
complicated. Let us note that this is not a contradiction with the theorem on the uniqueness of solu-
tions, because here we have a non autonomous differential equation and the phase plane is obtained
projecting from the phase space (t, x, v) 7→ (x, v). The theorem applies, when it is the case, in the
variables (t, x, v). For example, for the Duffing oscillator with forcing term 2.5 sin(2t), we get the
following phase diagram:

(%i72) duffing1:[v,-v/10+x-xˆ3/4+2.5*sin(2*t)]$

(%i73) icduffing1:[0,0]$
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(%i74) sduffing1:rk(duffing1,[x,v],icduffing1,[t,0,100,0.1])$

(%i75) pduffing1:map(lambda([x],rest(x)),sduffing1)$

(%i76) wxdraw2d(point_type=none,points_joined=true,color=coral,
xlabel="x(t)",ylabel="v(t)",points(pduffing1));

(%t76) (%o76)

Poincaré introduced a very useful technique to study the dynamics in these situations. It consists
in reckoning a trajectory in the phase space (x, v, t) by using hyperplanes equally spaced in time as
“check points”, and then projecting the resulting points on the plane (x, v):

Figure 1: Poincaré sections

Of course, if the time interval between these hyperplanes (called the Poincaré stroboscopic sec-
tions) is T and the system is periodic with period T , we will see just a point on the phase plane. In
the figure we see a quasi–periodic system: on the phase plane the trajectories are circumferences,
but several points can appear in the sections projection, showing that the system oscillates between
several equilibria with a frequency different from the time interval between the Poincaré sections.

When the dynamics is chaotic, the diagram obtained by projecting the Poincaré sections can be
really complicated, usually displaying fractal structure.
Let us compute the Poincaré sections for the case of the Duffing oscillator. First, we consider the case
of a period T = 2π

ω
corresponding to the frequency ω = 1 (that is, the forcing term is sin(t)). We

register the points in the orbit at time intervals of length T = 2π
ω

= 2π:
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(%i77) miter:25$

(%i78) %tau:bfloat(%pi)$

(%i79) sduffing2:rk(duffing,[x,v],icduffing,
[t,0,miter*2*%tau,%tau/30])$

(%i80) pduffing2:create_list(sduffing2[i],i,makelist(i*60,i,1,miter))$

(%i81) poinduffing2:map(lambda([x],rest(x)),
makelist(pduffing2[i],i,1,miter))$

(%i82) wxdraw2d(point_type=filled_circle,color=magenta,xtics=1,
ytics=1,xrange=[-4,1.5],yrange=[0,4],points(poinduffing2));

(%t82) (%o82)

With the exception of some sparse points representing the transient, we see that all the points
tend to a cluster (oscillations occur close to a limit cycle). To show that the most distant points
corresponds to the transient, we eliminate, for example, the first four samples (corresponding to the
sections at t = 0, 2π, 4π and 6π):

(%i83) transient:map(lambda([x],rest(x)),
makelist(pduffing2[i],i,5,miter))$

(%i84) wxdraw2d(point_type=filled_circle,color=magenta,xtics=1,
ytics=1,xrange=[-4,1.5],yrange=[0,4],points(transient));

(%t84) (%o84)
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Of course, increasing the number of samples we get a more illustrative picture. But the compu-
tational effort is not worth in this case. There are more interesting situations, as it is the case of the
Duffing oscillator with forcing term 2.5 sin(2t). Now the period corresponds to the frequency ω = 2,
that is, T = 2π

2
= π. We let the system evolve for a long time in order to get a large sample via the

Poincaré sections:

(%i85) duffing3:[v,-v/10+x-xˆ3/4+2.5*sin(2*t)]$

(%i86) icduffing3:[0,0]$

(%i87) maxiter:1000$

(%i88) sduffing3:rk(duffing3,[x,v],icduffing3,
[t,0,maxiter*%tau,%tau/30])$

(%i89) pduffing3:
create_list(sduffing3[i],i,makelist(i*30,i,1,maxiter))$

(%i90) poinduffing3:map(lambda([x],rest(x)),
makelist(pduffing3[i],i,1,maxiter))$

(%i91) wxdraw2d(point_size=0.3,point_type=circle,
xrange=[-5,5],yrange=[-7,3],xtics=1,ytics=1,
color=coral,points(poinduffing3),grid=true);

(%t91) (%o91)

10 Fractal dimension
As we have pointed out in previous sections, the appearance of strange attractors is a usual feature
of chaotic systems. These are sets around which the orbits move asymptotically (thus justifying the
name of attractor) and frequently have fractal dimension. We will introduce a particular notion of
fractal dimension (there are other possibilities) in the case of a two dimensional dynamical system, so
the attracting set A will be a subset of the plane. An example of this situation is given by the Duffing

284



The Electronic Journal of Mathematics and Technology, Volume 7, Number 4, ISSN 1933-2823

oscillator. The box-counting dimension of A is defined as follows: we start with a square of side
length l enclosing A. In the next step, we divide the square in r sub–squares, each having side length
l/r, and so on. In the k–step we have a grid with rk−1 squares, each with side length δk = l

rk−1 , that
cover the set A as in (%o91). For each step k, let N(k) be the number of squares containing at least
some point of A.
Let us observe that if A were a smooth curve (and, therefore, homeomorphic to a segment of R, to
which we would assign a topological dimension 1), for a small enough value of the side of the squares
each of them would contain a piece of the curve with length as close as we wish to the side length of
the square. So, in the case of a smooth curve, we would have

lim
k→∞

N(k) · δk = L,

with L the length of the curve. In this case we say that the scale of N(k) goes as δ−1k , that is,
N(k) ' δ−1k . Analogously, if A were a measurable set on the plane (a set having an area and, thus, of
dimension 2), we would haveN(k) ' δ−2k . Let us note that in these cases, that can be called “regular”
ones, the exponent D in the relation N(k) ' δ−Dk equals the topological dimension of the set. Then,
a fractal set can be defined as a set for which a relation of the kind N(k) ' δ−Dk holds, with D a
positive real number (not necessarily an integer). In general, we call this number D the box counting
dimension of the set, and remar that it satisfies

D = lim
k→∞

logN(k)

− log δk
.

This is a constructive definition that suggest how to perform the calculation of the box-counting
dimension for a given set. Explicitly, we can plot logN(k) versus − log δk, then we can fit the data
and finally estimateD as the slope of the regression line. As an example, let us calculate the dimension
of the Duffing attractor (%i85) with this procedure. We note that the Duffing attractor is contained in
the box [−5, 5]× [−7, 3]. We divide this box in 10× 10, 20× 20,..., 200× 200 boxes, counting how
many points are inside them. As a detail, we first “normalize” the coordinates in such a way that they
lie in the box [0, 10] × [0, 10]. The algorithm starts with a matrix filled with zeros and changes the
scale at successive steps multiplying these lengths by 2, 3, ..., 20:

(%i92) resolution:20$

(%i93) for n:1 thru resolution do
(Z[n]:substpart("[",zeromatrix(10*n,10*n),0),
boxcount[n]:0,
for k:1 thru maxiter do (
ix:floor(n*(poinduffing3[k][1]+5)),
iy:floor(n*(poinduffing3[k][2]+7)),
if is(Z[n][ix][iy]=0) then
(Z[n][ix][iy]:1,boxcount[n]:boxcount[n]+1)))$

Here is the plot of the pairs of numbers obtained.

(%i94) fitdim:makelist(
[log(n)/log(10),log(boxcount[n])],n,1,resolution),numer$
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(%i95) wxdraw2d(point_size=1,point_type=filled_circle,
color=dark_violet,points(fitdim));

(%t95) (%o95)

The first values are “outliers” (since the boxes are in fact too big), so we can safely discard them. In
the same way, for the last values the boxes are too small, counting nearly one point per box, so again
we can discard them. This situation, of data that gives a wrong contribution to the estimation of the
box-counting dimension, is a well known problem discussed in the literature (see [Kli 94]); in fact,
there are several algorithms aimed to automatically selecting the most representative data, but for our
(limited) purposes, we just use the visual information in the graph (%o95). According with this, it
seems a good choice to eliminate the first 7 values and the two last ones to make the fitting. The result
is:

(%i96) fitdimension:rest(rest(fitdim,7),-2)$

(%i97) load(stats)$

(%i98) model:linear_regression(fitdimension)$

(%i99) fiteqn:take_inference(’b_estimation,model);

(%o99) [6.021481801936183, .6534032420835236]

(%i100)fractaldimension:second(%);

(%o100) .6534032420835236

Since our approximation is very rough, we can round-off the value so obtained. Therefore, we can
say that the fractal dimension of the Duffing attractor is approximately 0.65 (between 0 and 1, as it
should be expected).

11 Conclusions
Let us finish with some comments about our experiences using of this material. When asking the
students for their impressions about the course, we were surprised by the (practical) absence of CAS-
related complains: its usage was considered as “very easy”. That was a surprise because we ourselves
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found it difficult to figure out the actual implementation for some questions arising in the development
of the work. We even had a case in which we wanted to do in situ modifications to the commands
and blundered into a dead end, until the way out was found by a clever student by digging in the
documentation. No doubt, this kind of interaction with the students at the calculus lab, the mutual
learning environment, is one of the major benefits of this approach. Aside from this, the motivation
of the techniques by means of physical models was well received (we took the opportunity to stress
the close relationship of Mathematics to other disciplines, such as Physics and Engineering).
Maybe, the lack of criticism about the CAS was due to the fact that it was the first exposure to one of
them for many of our students. Surely it was a rewarding experience for them (we were generating
the same figures appearing in the textbooks!), but we teachers noticed some drawbacks of Maxima.
The main one is related to its numerical capabilities: Maxima is way too slow when compared with
commercial software, such as Maple or Mathematica, especially when running on a laptop (which
we used when teaching outside our campus). But we think that its free and open-source character,
and the ease of its syntax, compensates for that. The other major concern was the quality of the
graphics, which clearly could be improved. Anyway, for the limited purposes of visualization of the
mathematical phenomena leading to chaos, we found Gnuplot acceptable.
As mentioned in the introduction, some topics were not touched upon in the lectures or in the practical
sessions. Those theoretical results depending on the use of irrational numbers are an example, other
were assigned as “research projects” to the students. We finish these brief comments with a partial
list of possible assignments:

1. The techniques explained in the notes can be applied to any dynamical system of the form
dx
dt

= F (x, t) or xn+1 = F (r, xn). Seek in the literature other standard systems and study them.
For example, xn+1 = k + x2n, or xn+1 = cos(k · xn), etc.

2. Get a copy of K. Briggs paper [Bri 89] (it is freely available in his web page). Study it and write
a Maxima script for computing the value of Feingenbaum’s constant.

3. It is interesting to study the behavior of the Lyapunov exponents as functions of the logistic
map’s parameter, that is, the function λ = λ(k). Write the necessary code to plot in the same
graph λ(k) and the bifurcations of the logistic map (it is a very popular picture). What could be
deduced from the result?.

4. Study the orbits and attractors of the Rössler system. Compare them to those of the Lorentz
system.

5. Determine the attractor of other systems that are described by a second order differential equa-
tion, in the same way that was done for the Duffing oscillator (for example, read about the
elastic pendulum, also known as the spring pendulum). Then, calculate its fractal dimension.

6. Generalize the algorithm for computing the box-counting dimension to the 3D−case. Compute
the fractal dimension of the Lorentz and Rössler attractors.
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